8 research outputs found

    Hadoop Based Data Intensive Computation on IAAS Cloud Platforms

    Get PDF
    Cloud computing is a relatively new form of computing which uses virtualized resources. It is dynamically scalable and is often provided as pay for use service over the Internet or Intranet or both. With increasing demand for data storage in the cloud, the study of data-intensive applications is becoming a primary focus. Data intensive applications are those which involve high CPU usage, processing large volumes of data typically in size of hundreds of gigabytes, terabytes or petabytes. The research in this thesis is focused on the Amazon’s Elastic Cloud Compute (EC2) and Amazon Elastic Map Reduce (EMR) using HiBench Hadoop Benchmark suite. HiBench is a Hadoop benchmark suite and is used for performing and evaluating Hadoop based data intensive computation on both these cloud platforms. Both quantitative and qualitative comparisons of Amazon EC2 and Amazon EMR are presented. Also presented are their pricing models and suggestions for future research

    Deep Learning-Based Iris Segmentation Algorithm for Effective Iris Recognition System

    Get PDF
    In this study, a 19-layer convolutional neural network model is developed for accurate iris segmentation and is trained and validated using five publicly available iris image datasets. An integrodifferential operator is used to create labeled images for CASIA v1.0, CASIA v2.0, and PolyU Iris image datasets. The performance of the proposed model is evaluated based on accuracy, sensitivity, selectivity, precision, and F-score. The accuracy obtained for CASIA v1.0, CASIA v2.0, CASIA Iris Interval, IITD, and PolyU Iris are 0.82, 0.97, 0.9923, 0.9942, and 0.98, respectively. The result shows that the proposed model can accurately predict iris and non-iris regions and thus can be an effective tool for iris segmentation

    An Effective Supervised Machine Learning Approach for Indian Native Chicken’s Gender and Breed Classification

    Get PDF
    This study proposes a computer vision and machine learning (ML)-based approach to classify gender and breed in native chicken production industries with minimal human intervention. The supervised ML and feature extraction algorithms are utilized to classify eleven Indian chicken breeds, with 17,600 training samples and 4,400 testing samples (80:20 ratio). The gray-level co-occurrence matrix (GLCM) algorithm is applied for feature extraction, and the principle component analysis (PCA) algorithm is used for feature selection. Among the tested 27 classifiers, the FG-SVM, F-KNN, and W-KNN classifiers obtain more than 90% accuracy, with individual accuracies of 90.1%, 99.1%, and 99.1%. The BT classifier performs well in gender and breed classification work, achieving accuracy, precision, sensitivity, and F-scores of 99.3%, 90.2%, 99.4%, and 99.5%, respectively, and a mean absolute error of 0.7

    An Effective Supervised Machine Learning Approach for Indian Native Chicken’s Gender and Breed Classification

    Get PDF
    This study proposes a computer vision and machine learning (ML)-based approach to classify gender and breed in native chicken production industries with minimal human intervention. The supervised ML and feature extraction algorithms are utilized to classify eleven Indian chicken breeds, with 17,600 training samples and 4,400 testing samples (80:20 ratio). The gray-level co-occurrence matrix (GLCM) algorithm is applied for feature extraction, and the principle component analysis (PCA) algorithm is used for feature selection. Among the tested 27 classifiers, the FG-SVM, F-KNN, and W-KNN classifiers obtain more than 90% accuracy, with individual accuracies of 90.1%, 99.1%, and 99.1%. The BT classifier performs well in gender and breed classification work, achieving accuracy, precision, sensitivity, and F-scores of 99.3%, 90.2%, 99.4%, and 99.5%, respectively, and a mean absolute error of 0.7
    corecore